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SUMMARY 

In this paper the propagation of long waves (tides) into a canal 
is studied. The canal is assumed to be rotating at constant angular 
velocity and the depth of the fluid is uniform. 

The rate of rotation can have a considerable effect on the 
amplitude of the unattenuated modes in the channel. This is due 
partly to the modification of the known solution when the rotation 
is zero, and partly to the fact that even if there is only a single 
semi-infinite barrier unattenuated waves of a special type (Kelvin 
waves) may be propagated in the rotating system into what is 
normally called the ' shadow ' region behind the barrier (Crease 
1956). 

The purpose of this theoretical investigation is to seek a partial 
explanation of the behaviour of tides and storm surges in the 
North Sea. For this reason two models of this region are discussed. 
In Example I the model is of two parallel semi-infinite barriers in 
the path of a plane progressive wave, and in Example I1 there are 
two parallel barriers, one semi-infinite and the other infinite. 

The ratio of the observed height of the semi-diurnal M2 tide 
in the North Sea to the height of the incident tide from the 
Atlantic lies between the results predicted by the two models and 
is in closer agreement with the model of Example I. 

1: INTRODUCTION 
It has been shown in a previous paper (Crease 1956) that long waves 

incident normally on a semi-infinite barrier in a rotating system give rise 
to waves of Kelvin type which are propagated without attenuation into 
the region behind the barrier. The direction of propagation is parallel 
to the barrier and the crest heights decrease exponentially in the direction 
normal to the barrier. When the ratio of the wave frequency CT to the 
angular velocity w of the rotating system is such that 2w/a > 3 / 5 ,  the amplitude 
of the Kelvin wave at the barrier is greater than that of the incident waves. 

This effect appears to  explain qualitatively the formation of the semi- 
diurnal tides in the North Sea; for, to a first approximation, the British 
Isles may be regarded as a semi-infinite barrier across the path of the M z  
tide propagated in from the Atlantic, 
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In this paper the effect of the continental coast on the formation of the 
Kelvin wave is examined. Two extreme cases are considered as an 
approximation to the continental boundary. In  Example I (9 3 to Q 5 )  the 
boundary is taken to be a second semi-infinite barrier parallel to the first 
and a distance 2a behind it. In Example I1 (Q 6 to Q 11) it is assumed to 
be an infinite barrier distant 2a behind the semi-infinite barrier. 

In  neither of these systems is there a barrier corresponding to the 
southern end of the North Sea. Taylor (1921) has considered the reflection 
of Kelvin waves at the end of a long gulf, but here we are only concerned 
with the transmission of waves into a channel from outside. The possibility 
of resonance effects is thus ruled out. 

The problem when w = 0 is a familiar one in acoustics and scalar electro- 
magnetic theory, and Heins (1948) has solved the problem of an incident 
electric field parallel to the edges of the barriers. It is his method of 
solution, based on the Wiener-Hopf method, that is used in this paper. 
Vajnshtejn (1948) has also solved this problem and the acoustic problem, 
and investigates his solutions in more detail. 

In the case of a single barrier, rotation gives rise to the Kelvin wave 
mentioned above in addition to the usual diffracted wave diverging from 
the edge of the barrier. When there are two semi-infinite barriers the 
parts of the diffracted waves propagating into the channel may be regarded 
loosely as giving rise to the ‘ channel ’ modes of acoustics (w = 0) which, 
by the rotation of the system, become waves of Kelvin and PoincarC type 
(Proudman 1953, p. 265). In  addition, the Kelvin waves arising from the 
barriers individually also propagate down the channel. The amplitude of 
the waves in the channel will depend on its width, which in this paper is 
restricted to be less than half a wavelength. This condition is satisfied for 
the North Sea. The observational data for the North Sea lie between 
the two cases, and is in better agreement with the model proposed as 
Example I. 

2. THE DIFFERENTIAL EQUATION FOR THE WAVE HEIGHT 5 
The equations governing the propagation of long waves in a system 

rotating at angular velocity w are, subject to certain approximations (cf. 
Lamb 1932, p. 318), 

a t  

where u, v are the horizontal components of particle velocity parallel to x, y, 
h i s  the depth of water, and f = 2w. From equations (1) the equation for 5 

u 2  
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is found to be 

The boundary condition at a barrier is that the normal component of 
velocity is zero. When the barrier is along the x-axis, we have v = 0 and, 
in terms of t;, 

a25 at; 
a y a t = f &  

on the barrier. 

t;(x,y)exp( -id), say. Equations (2) and (3) then become 
If the motion is periodic with time, we may replace t;(x,y, t )  by 

where k2 = (a2 - f 2)/gh, and 
at; - if at; 
ay ax 
- - -- 

on the barrier. It will be convenient to let if/. = tanij?, and to assume that 
K has a small positive imaginary part which may be taken to be zero when 
the solution of the problem has been obtained. 

EXAMPLE I. TWO SEMI-INFINITE BARRIERS 

3. THE INTEGRAL EQUATIONS 

Let the barriers be at y = -t a, x > 0 (figure 1). By Green’s theorem 
{ ( x , y )  may be expressed as a contour integral round a contour r surrounding 
the point (x,y). Thus, 

where a/&, is differentiation along the outward normal to I?, and dso is 
an element of l?, which is taken to be a circle indented round the barriers 
and whose radius tends to infinity (figure 1). 

G is the free-space Green’s function given by (Morse & Feshbach 1953, 
p. 811) 

where HI:) is the usual notation for a Bessel function of the third kind. 

1956), it is found that 

G(x,y ; xo,yo) = &iH~1)[k((x-~o)2 + ( ~ - ~ 0 ) ~ ) ~ ’ ~ ] ,  ( 6 )  

By using the boundary condition ( 5 )  and integrating by parts (Crease 

where [{I . .  is the limit as 6 .+ 0 of <(xo,yo + 6 )  - S(xo,yo - a), and it is assumed 



Long waves in a semi-infinite channel in a rotating system 309 

that [(I is bounded at infinity. Here ii is the prescribed incident wave and 
is taken to be a plane wave at an angle Oo to the barrier. Thus, 

ti = expik(xcosB,+ysinO,). 
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Figure 1. 

The boundary condition is that 

ax a 
a 

cosip - -sin+?- ( aY 
shall-vanish on y = 5 a, x > 0. Thus, by operating on (7) with 

ax a )  
a 

cosip cosip - - sin$ - ( aY 
and setting y = +_ a, x > 0, we obtain the following pair of integral equations 
of Wiener-Hopf type for [((x, a)] and [ ( ( x ,  -a)]. When these are solved, 
(7) gives ( (x , y ) .  Thus, on y = T a, 

ax a )  a 
g,,,(x) = ql,%(x) + cos is - - sin ip - x ( aY 



3 10 J. Crease 

where 

f1,2(x) = [5(x, T .)I x > 0, 

= 0  x < 0, 
x > 0, 

= o  x < 0, 

x > 0, 

q1 2(x) = ik cos ip sin(8, - iP)exp ik(x cos c), a sin 8(,) 

g1,2(4 = 0 

. (9) 

and g,,,(x) are defined by equations (12) for x < 0. These and following 
pairs of equations have been written in a condensed form. The  upper 
and lower signs in the equations refer to the first and second suffices 
respectively (e.g. fl,2(x) = [c(x, 7 a ) ]  implies the two equations 

fl(.> = [ib -all> f 2 ( x )  = “(x,a)l). 
Equations (8) may be added and subtracted; and since 

G(x, - u ; ~ 0 ,  - a )  = G(x, u ; xO, a )  

and G(x, - u ; x,, U )  = G(x, u ; x,, - a )  = G(x, 0 ; x0, - ZU), 
we have 

ax a )  
a 

g3,,(x) = q 3 , 4 ( ~ ) +  cosip- - s h i p -  x ( aY 

(10) 
on y = 0, where g3,4 = g, +g, etc. We may now take Fourier transforms 
of these equations, denoting transforms by corresponding capital letters, 
and obtain 

) 
G3,4(a) = e3,4(.)+F3,4(c()(cosiB % a -&sinip cosip - a -iorsini/3 x 

>( aY0 
x {K(%Y,Yo), = y o  = o  f K(%Y,Yo)v =0,yo = -2ah (11) 

where K(a,y,y,)  is the transform of G(x ,y ;  O,y,) and is given (Heins 
1948) by 

Equations (11)  may be conveniently written as 

in which K3,,(a) are explicitly 

K(a,y,y,) = +iexp[i/y-y,l(k2-- a2)1’2]/(k2- C C ~ ) ~ ’ ~ .  

G3,4(4 = Q 3 , 4 ( 4  - F3,4(4K3,4(ah 

(12) 

(13 1 

K3,4(a) = (a2 - k2 cos2 ip ) (k2  - a2)ll2 exp ia(k2 - ~ 2 ) ~ ’ ~  (i?JU(L2 - a y .  

(14) 
Also, from (9), 

= 2k(a - k cos &)-I cos ip sin(8, - ia)( ‘0‘. ) (uk sin 8,). (15) 

These equations are determinate, as all the transforms have a common 
strip of regularity -${A?} < .Y{a} < 0 (or < ~ { L C O S ~ , )  if this is 

- 2  sin 
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negative). The  argument is the same as for the case of a single barrier 
(Crease 1956). The  transforms K,,,(a) may be decomposed into the form 
K3,4(a) = K;4(a)/K$4(a), where K,,(a) are regular and free of zeros for 
${a} < #{k>, and K3t4(a) are regular and free of zeros for ${a> > - 4 { k ) .  

Equations (13) may now be written as 

G : , , ( a ) q , ( 4  - Q23,4(a){K<4(4 - JqJk cos eo)) 

= _O,,,(ooK,?;(R cos 4,) -F.,,,(4K3,4(4- (16) 
In  this form the left-hand side of these equations are regular for ${a> > $(k}, 
and the right-hand side for Y{a> < 0 (or < .Y{k cos O,} < 0). Thus each side 
of both equations (16) is an analytical continuation in their (overlapping) 
half-planes of entire functions E,,,(a) respectively. Now KC4 ( a )  are 
O ( t ~ - l ~ ~ )  and Kc4(a) are O(a112) as \a]++ co (see below), and it follows 
from the known behaviour of the other functions that the left-hand side 
is 0(a-l j2)  and the right-hand side is O(a1l2). By an extension to Liouville’s 
theorem (Titchmarsh 1939, p. 85), the entire functions must be constants ; 
and, from the behaviour of the left-hand side as [a[  + 00, the constants are 
zero. Therefore it follows from equations (16) that 

F3,4(4 = Q23,4(W:;f4(k cos 4 # q 4 ( @ ) .  (17) 
I t  remains to determine the factorization of equations (14) explicitly. 

From (14), 

X 

Thus 

1, 2iaa 4a2k2 )1/2+ 2iaoc leXp[ - 
x n-1 fi[(1- (2n-1)2n2 (Zn - 1 ) ~  (2n - 1 ) ~  

2iaa 
(2n - l)7r ]exp[ (2n - l ) ~  1, (19) 

where x0(a)  is an entire function introduced to  make K;(a) and K:-(a) 
algebraic as ]a1 + co. Asymptotically we find that as ]a\  + co, Y { a )  < 9 { k ]  
(cf. Heins 1948) 

2ak 
K; ( a )  N - (a/2)1/2 exp 

where y is Euler’s constant. 
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Therefore, if 

(20) 

then K;(a) - - (a/Z)1/2 as la/ +- a, .Y{a} < #{k) ; and similarly 
K,lt(a) - ( 2 / ~ ) l ’ ~  as la/ + 00, ${a} > - 9 { k } .  Similarly, for &(a),  

with 

rr ak 
The asymptotic behaviour of K L ( ~ )  and K4+(a) is then 

rC,- (E) - ta(iaa/rr)1/2, K4f (E) N ( - rr/iaa)lI2. 
The solution of the integral equations is now given by the Fourier 

transforms of equations (17), but these transforms will not be needed 
explicitly as 5 may be expressed directly in terms of F3.4(a). 

4. THE WAVE HEIGHT 5 
The integrals in (6) are convolutions and may be rewritten as 

+ exp i k (x  cos 8, +y sin 8,) (24) 
where - 9 { k }  < E < 0 (or < .Y{k cos O,} < 0). Particular interest lies in the 
wave amplitude at large distances from the edges of the barriers. This 
is given by the residues at the poles of the integrand; the branch line 
integrals obtained by deforming the contour only give a contribution which 
tends to zero at large distances from the edges. The poles are at a = k cos O,, 
kcosip, and the zeros of the infinite products of (18) and (21). These 
latter zeros give rise to terms decaying exponentially to zero in the 
x-direction, provided 0 < 2ak < r. 

If x < 0, the contour of 
equation (24) may be closed below, and there is no contribution of the 
pole to the integral. 

We consider first the pole at a = kcos8,. 

If x > 0, the residue is found to be 
- exp ik(x cos 8, +y sin 8,) for y > - a,  

and sin(8, - ip) 
sin(8, + $3) exp ik{x cos 8, - (y + 2a)sin 8,) 
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for y < -a .  Thus, these terms together with the incident wave represent 
the reflection pattern obtained by a geometrical construction (apart from 
a phase change in the reflected wave due to rotational effects). 

There is again 
no contribution for x < 0. For x > 0, y > a, the residue is found to be 

4cosip 
sin(8, + ip) 

Next we consider the residue at the pole u = kcosip. 

xexp[F{ -8,sin8,+ipsinip+(cosip-cos8,) 
2ak 

x [cos he, sin &/3 co~l /~(uk  sin 8,)cos1’2(ak sin iP)exp i+, + 
+ $i(sin 8, sinip sin(ak sin B,)sin(ak sin i/3))1/2 exp x 

x exp ik(x cos ip + (y - a) sin ip}, (26) 
are real phase factors which tend to zero when uk --f 0. where CJJ~,,, 

When a > y > -a ,  the residue 5, at u = kcosip is 

5‘ = sin(8, 2 cos + ip ip) exp[$  sin^,- (n-ip)sinip- 

cos(ak sin 8,) 1/2 

cos(ak sinip) i x  in )}][ cos go, sin i ip - (cos do - cos ip) 
2ak 
sin(ak sin 8,)}1/2 expi#, ] x 
sin(ak sin ip) 

x exp ik{x cos ip + ( y  + a)sin ip}. (27) 
Finally for y < - a there is no pole at u = k cos ip. Thus the wave height 
at large distances from the barrier (and from the edge of the geometrical 
shadow) is determined by the incident wave and equations (25), (26) and (27). 

5. DISCUSSION 
We may consider first the form of the solution when the barriers are 

Then, for y > a, the expression (26) becomes close together (ak+O). 

‘OS ip cos 48, cos Bip exp ik{x cos ip + ( y  - a)sin ip}, (28) sin(8, + ip) 

and equation (28) becomes 
2 cos i p  cos $8, 

sin(8, + i s )  
(sin +ip + sin 38,)exp ik{x cos i/3 + (y  + a)sin ip). (29) 5,  = 

-4s is to be expected, (28) is just the solution for the wave height in the 
shadow region behind a single semi-infinite barrier (cf. the particular case 
of normal incidence discussed by Crease (1956)). 

The second term of (29) shows perhaps rather more clearly than (27) 
the effect of rotation in modifying the ‘ channel ’ mode which exists when 
w = 0 (see below), whilst the first term gives the additional Kelvin wave 
which arises purely through rotation of the system whether there be one 
barrier or two. 
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When the rate of rotation becomes small ( P + O ) ,  the residue given by 
( 2 6 )  approaches zero whilst (27) becomes 

sin ak sin 0,) 
exp i+l exp ikx, (30) [' aksin0, 1 

with p = 0 in This result corresponds to the usual channel mode without 
rotation, and has its counterpart in the acoustic and electromagnetic problem. 

Figure 2 shows for comparison the amplitude of the waves transmitted 
into the channel when coshp = 1 (w = 0) and when coshp = 2 
(wju = $43) for three different widths of the channel. The latter value 

3 

I 

0 30- 6fl W" la4 

0. 

Figure 2. Amplitude of 5,  on y = --a for cosh /3 = 2 (solid lines), and coshp = 1 
The amplitude behind a single semi-infinite barrier is shown for (dashed lines). 

comparison (short dashed line). 

of coshp corresponds to the M2 tide at the entrance to the North Sea (for 
2w we use the local value of the Coriolis parameterf). The appropriate 
value of 2ak in this case (with 2a = 400 km, h = 100 m) is approximately 
0.29~.  The figure also shows the amplitude of the waves behind a single 
barrier as a function of 0, when coshp = 2. 

It may be seen that for the North Sea the amplitude differs little from 
that of a single barrier except for small angles of incidence. When 
0, = in ,  the amplification of the channel wave is slightly greater than 2. 
This may be compared with the observed tide in the approaches to the North 
Sea and the tide at points on the Scottish coast. The average amplitude 
of the tide at Rockall and in the Shetlands is approximately 2.1 ft., and a t  
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points down the Scottish and North-East English coasts it is 4.8 ft. ; so 
the observed amplification equals 2.3 approximately, in fair agreement with 
the calculated value. 

EXAMPLE 11. CHANNEL WITH ONE SEMI-INFINITE AND 
ONE INFINITE BARRIER 

We now investigate a model in which long waves approach a semi- 
infinite barrier in front of an infinite barrier. This and the previous model, 
together with that of a single semi-infinite barrier (Crease 1956), form 
three limiting cases for studying the additional effects that may arise at 
the edges of barriers in rotating systems. Again Heins (1956) has described 
the results for a similar problem in acoustic diffraction. This corresponds 
to the special case w = 0. Much of the detail in this part is the same as 
for Example I and in general only the outline of the mathematical argument 
is given. 

6. DERIVATION OF THE INTEGRAL EQUATION 

Let the barriers be a t y  = a, - co < x < co, and aty = -a ,  0 < x < co. 
Again 5 may be expressed (by the use of the boundary condition (5)) as 

<--,a> - - - -  - - - - - - - - - - - - - - - - - - - - - (?%a> 

I ! 

w 

Figure 3. 

a contour integral round a contour rl (figure 3 )  involving a Green's function 
to be defined explicitly below ; thus 

where the arc in the last integral is the semi-circle shown in figure 3.  
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Now let G,(x,y ; xo,yo) be chosen so that 
a 

cosip- G,(x,y; xo,yo) = 0 

on y = a. 
is the sum of the incident wave li and the wave 5,. reflected at y = a. 
Ci = exp ik(x cos 8, + y  sin O,), then 

With this definition it is found that the integral round the arc 
If 

- 
exp ik(x cos e, - ( y  - 2a)sin e,}. 

sin(8, + ig) 5, = (33 1 
Thus a plane wave reflected at an infinite barrier in a rotating system suffers 
a change of phase. The two waves together form a wave of PoincarC type 
(Proudman 1953, p. 265). 

Equation (31) now becomes 

+ exp ik(x cos 8, + y  sin 0,) + 
sin(8, - is) 
sin(8, + $3) 

+ exp ik{x cos 8, - ( y  - 2a)sin O,}. (34) 

By operating with cos ip(cosip ajay - sinip ajax) on equation (34) aty = - a, 
x > 0, the single integral equation for [Z;(x,, - a ) ]  of Wiener-Hopf type is 
found to be 

a )  ( aY aY 

a g(x)  = q(x) + cosip - - s h i p  - x 

where 
f ( x >  = 0 

g(x)  = 0 
q(x) = 0 

x < 0, 
x > 0, 

x > 0, 
x < 0, 

x > 0,  

= [ax,, -all 

= 2k cos is sin(8, - is)sin(2ak sin 8,) x 

x exp ik(x cos 8, + 2a sin 0,) 
J 

and g(x)  is defined by equation (35) for x < 0. 

7. THE GREEN’S FUNCTION G,(x, y ;  x,, yo)  
The Green’s function satisfying (32) can be derived from the free space 

Green’s function of (6) by expressing it as a contour integral (cf. Watson 
1944, p. 178) of the form 

i iao-fn+llr 
@Hp{k[(x-x,)2+ (y-yo)2]1’2} = - 1 X 

- i 00 + tn+* 
x expik[(x-x,)cosu+ (y-yo)sinu] du, (37) 

The contour of integration C where x - x, = R cos I,!J, y -yo = R sin I,!J. 
may be shifted by + ~ / 2  in the direction of the real axis. 
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I t  is then clear that G, may be represented by 

G,(x,y; xo,yo) = - - expik[(x-x,)cosu+(y-y,)sinu]+ J,{ 
exp ik[(x - x,)cos u + (y  +yo - 2a)sin u]  

sin(u + i/3) 
sin(u - ip) 

t- 

The second term in the integral represents a source at the image point 
(x,, 2a -yo) with a suitable phase shift to satisfy the boundary condition. 
The  Fourier transform of GI regular for I9{a}I < 9 { k }  is found to be 

x exp i(k2 - a2)1/21y +yo - 2a/  , (39) 

where sin u,, = - (k2 - t ~ ~ ) l / ~ / k  and that branch of (k2  - tc2)lI2 is chosen 
which approaches k as u approaches zero. 

1 

8. SOLUTION OF THE INTEGRAL EQUATION 

Taking the Fourier transform of (35) yields formally 
a 

G(a) = Q(a)+F(a)  

say, in notation similar to that used for Example I. 
The  argument now is essentially as for Example I (there is only one 

equation to solve, however). L ( a )  is decomposed into factors L-(a)/L+(u) 
with appropriate regions of regularity, and we find that 

Specifically, 
= Q ( ~ ) L + ( K  cos e0)p+). 

and 

L-(a) = 2a(a - k cosip)exp 

x fi[( 1 - 4a2k2 =) + g ] e x p (  - g), 
* (42) 

n= 1 

- = (u+kcosip)exp 
L+(a) 

1 

I x fi [ (1  --) 4a2k2 - Z l e x p r s ) ,  1 
? z = l  
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9. THE WAVE HEIGHT i 
Equation (34) may be expressed in terms of known Fourier transforms 

as 

+ exp ik(x cos 8, + y  sin 8,) + 
sin(O,-iP) 
sin(@, +ip) + exp ik(x cos 8, - ( y  - 2a)sin do) ,  (43) 

where The  wave motion at a 
distance from the edge of the semi-infinite barrier is easily found by 
evaluating the residues of the integral in (43) at its poles. 

This will give rise to the 
‘geometric’ terms 1;, as we have seen in Example I. When these are 
combined with the incident and reflected waves, we obtain the following 
results : ’ 

- 9 { k )  < E < 0 (or < .Y{kcos8,} < 0). 

First consider the pole at a = kcos8,. 

( a )  x > 0, 

(b )  x>0, - a > y >  -03, 

a > y  > -a ,  

5, = 0 ;  

sin(8, - ip) 
sin(0, + ip) 5, = exp &(x cos 8, + y  sin 8,) + X 

x exp ik(x cos 0, - ( y  + 2a)sin 8,) ; 
(c) x < o ,  a > y >  -03, 

sin(O,-ifI) 
sin(8, +$) 

5, = exp ik(x cos 8, + y  sin 0,) + 
x exp ik(x cos 8, - ( y  - 2a)sin 0,). 

If 0 < 2ak < T ,  the only other pole leading to undamped waves at a distance 
from the edge of the barrier is at CI = k cosip. Again, when x < 0, there 
is no contribution, and the residue is also zero when x > 0, - a  > y > - 00. 

For x > 0, a > y > - a ,  the residue Cc at this pole is 

]I”,/ [ sin(2ak 2ak sin sin i/3 ip)]1/2 X 

xexp*[(cosip-coso,) Z 2ak 

- 8, sin 8, - (Z - $)sin ip + exp ik(x cos ip + ( y  + a)sin ip), (44) 1 
where is the same as in Example I, except that 2a replaces a. 
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10. DISCUSSION OF EXAMPLE I1 

3 19 

There are certain interesting differences between the wave amplitudes 
in the channel found in this and the previous example. 

First, as 8, approaches zero in (44), the amplitude approaches zero. 
Mathematically, the explanation lies in the expression for the reflected 
wave given by ( 3 3 ) .  This wave suffers a phase change relative to the 
incident wave, which approaches 180" as 8, becomes small. The  effects 
of the incident and reflected waves thus cancel one another. However, 
the asymptotic form of (44) as 8, approaches zero will be a good approxi- 
mation only at increasing distances down the barrier. Physically speaking, 
the particles in a plane wave in a rotating system have transverse accelerations 
which are balanced by the Coriolis force due to motion in the direction of 
propagation. When 8, approaches zero, these transverse accelerations 
would be in a plane almost perpendicular to the barrier. As there can be 
no motion through the barrier, these accelerations must be annulled by 
those from a reflected wave almost 180" out of phase with the incident 
wave. 

- - - - _ _  

30" 6 0" 1200 

Figure 4. Amplitude of 5, on y = --a for cosh p = 2 (solid lines) and cosh @ = 1 
(dashed line). 

Second, the term which in Example I was found to arise essentially 
from the rotational effects at a single semi-infinite barrier (cf. equation (29)) 
is seen to be absent from equation (44). This again may be understood by 
considering the rotational effects of two plane waves approaching a single 
semi-infinite barrier, one at an angle 0, and the other at -8, with a phase 
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shift of sin(8, - iB)/sin(8, +$I). It is found that the waves propagated 
down the barrier as a result of these two incident waves annul one another. 

Figure 4 gives the amplitude at the barrier y = - a, x > 0 for cosh /3 = 2 
corresponding approximately to the M2 tide in the latitude of the North Sea. 
The  value of 2aR for this sea is 0 . 2 9 ~ .  It is seen that the amplitude of a 
normally incident wave is about 3.0, which is in excess of the observed value 
of 2.3 quoted for Example I. 
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